Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Hong-Zhen Xie* and Wei-Juan Pan

State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China

Correspondence e-mail: xiehongzhen@nbu.edu.cn

Key indicators

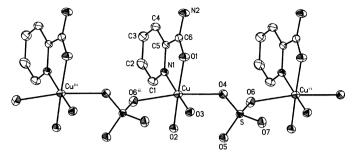
Single-crystal X-ray study $T=298~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.003~\mathrm{\mathring{A}}$ R factor = 0.022 wR factor = 0.055 Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A monoclinic polymorph of *catena*-poly[[[diaqua-(pyridine-2-carboxamide- $\kappa^2 N^1$,O)copper(II)]- μ -sulfato- $\kappa^2 O$:O'] monohydrate]

The title crystal structure, $\{[Cu(SO_4)(C_6H_6N_2O)(H_2O)_2] - H_2O\}_6$, is a monoclinic polymorph of the previously reported triclinic structure [Sieroń & Bukowska-Strzyżewska (1999). *Acta Cryst.* C**55**, 491–494] in which sulfate ligands bridge six-coordinate Cu atoms, generating an extended one-dimensional chain structure along [010]. Neighboring chains are connected by N $-H\cdots O(\text{sulfate})$ hydrogen bonds into ladders, which are further connected into two-dimensional layers perpendicular to the [100] direction by N $-H\cdots O(\text{water})$ and $O(\text{water})-H\cdots O$ hydrogen bonds. These layers are connected by $O-H\cdots O$ hydrogen bonds into a three-dimensional network.

Received 9 January 2007 Accepted 15 January 2007


Comment

Recently, the rational design and synthesis of polymeric metalorganic coordination networks has been an active research area because of its application in many fields (Moulton & Zaworotko, 2001; MacGillivray *et al.*, 1998). It is well known that the utilization of multidentate *O*- or *N*-donor ligands is an effective strategy in the construction of these types of complex networks (Zheng *et al.*, 2004; Kamiyama *et al.*, 2000). As part of our recent research, we selected 2,4,6-tri-2-pyridyl-1,3,5-triazine (tptz) in the hope of constructing a coordination polymer with potential applications, but instead we obtained the title compound, (I), from the reaction of tptz and CuSO₄·5H₂O. This was most likely the result of tptz undergoing hydrolysis, yielding pyridine-2-carboxamide (Cantarero *et al.*, 1988; Lerner & Lippard, 1977).

$$\star$$
 H_2O
 OH_2
 OH_2O
 OH_2O
 OH_2O

Compound (I) is a monoclinic polymorph of the previously reported triclinic structure (Sieroń & Bukowska-Strzyżewska, 1999). Part of the one-dimensional chain structure of (I) is shown in Fig.1. The unique Cu atom is coordinated in a slightly distorted octahedral environment by N and O atoms from a chelating pyridine-2-carboxamide ligand, two O atoms from two bridging sulfate ligands and two O atoms from two water

© 2007 International Union of Crystallography All rights reserved

Figure 1 Part of the one-dimensional chain structure of (I). Displacement ellipsoids are drawn at the 45% probability level. H atoms have been omitted. [Symmetry codes: (iii) x, y + 1, z; (vi) x, y - 1, z.]

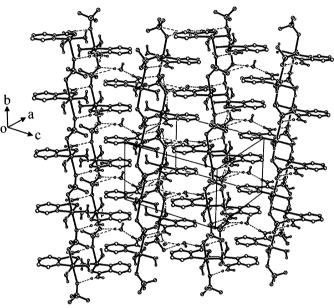


Figure 2
A two-dimensional supramolecular layer of (I). Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted.

ligands. The resulting one-dimensional chain structure propagates along [010]. Selected bond distances and bond angles are listed in Table 1.

There are strong intrachain hydrogen bonds between atom O2 of the coordinated water molecule and atom O5 of a sulfate ligand (see Table 2 for hydrogen-bonding geometry). Neighboring chains are connected by interchain N2–H···O4 $^{\rm i}$ (symmetry codes as in Table 2) hydrogen bonds into ladders, which are further assembled into two-dimensional layers perpendicular to the [100] direction by N2–H···O8 $^{\rm ii}$ and O8–H···O6 $^{\rm v}$ hydrogen bonds (Fig. 2). The two-dimensional layers are stabilized by the remaining hydrogen bonds between O atoms of the sulfate ligand and the uncoordinated water molecules, forming a three-dimensional network (Fig. 3).

Experimental

Addition of 2,4,6-tri-2-pyridyl-1,3,5-triazine (tptz) (1.25 g, 4.0 mmol) to a stirred aqueous solution (30 ml) of CuSO₄·5H₂O (2.0 g, 8.0 mmol) yielded a turbid blue solution. This was refluxed for

30 min at 363 K followed by filtration after cooling. The resulting blue filtrate was maintained at room temperature and slow evaporation afforded blue crystals one month later (yield: 40% based on the initial $CuSO_4 \cdot 5H_2O$ input).

Crystal data

Data collection

refinement

Rigaku R-AXIS RAPID diffractometer 2559 independent reflections 2559 independent reflections 2284 reflections with $I > 2\sigma(I)$ Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.504$, $T_{\max} = 0.773$ Refinement Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0211P)^2]$

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.055$ S = 1.14 2559 reflections 195 parameters H atoms treated by a mixture of independent and constrained $w = 1/[\sigma^2(F_o^-) + (0.0211P)^2 + 0.8198P]$ $where <math>P = (F_o^2 + 2F_c^2)/3$ $\Delta \rho_{\text{max}} = 0.001$ $\Delta \rho_{\text{max}} = 0.35 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.30 \text{ e Å}^{-3}$

Table 1 Selected geometric parameters (Å, °).

Cu-O3	1.9492 (15)	Cu-O1	2.0045 (13)
Cu-O2	1.9787 (14)	Cu-O4	2.3788 (14)
Cu-N1	1.9806 (16)	$Cu-O6^{i}$	2.4173 (14)
O3-Cu-O2	93.96 (7)	N1-Cu-O4	96.20 (6)
O3-Cu-N1	172.45 (6)	O1-Cu-O4	88.12 (5)
O2-Cu-N1	92.68 (7)	$O3-Cu-O6^{i}$	87.81 (6)
O3-Cu-O1	92.33 (6)	$O2-Cu-O6^{i}$	85.57 (6)
O2-Cu-O1	172.17 (6)	$N1-Cu-O6^{i}$	89.13 (5)
N1-Cu-O1	81.36 (6)	$O1-Cu-O6^{i}$	99.34 (5)
O3-Cu-O4	87.68 (6)	$O4-Cu-O6^{i}$	171.43 (5)
O2-Cu-O4	87.48 (6)		

Symmetry code: (i) x, y + 1, z.

Table 2 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdot\cdot\cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
N2−H4 <i>B</i> ···O4 ⁱⁱ	0.80 (3)	2.11 (3)	2.900 (3)	169 (3)
$N2-H4A\cdotsO8^{iii}$	0.86(3)	2.20(3)	3.056 (3)	170 (3)
$O2-H2B\cdots O8^{i}$	0.78 (3)	2.03 (3)	2.792 (3)	167 (3)
$O2-H2A\cdots O5$	0.79(3)	1.90(3)	2.668 (3)	162 (3)
$O3-H3B\cdots O7^{iv}$	0.74(3)	2.07 (3)	2.796 (3)	166 (3)
$O3-H3A\cdots O7^{i}$	0.82 (3)	1.84 (3)	2.649 (3)	169 (3)
O8−H8A···O5	0.74(3)	2.10(3)	2.828 (3)	170 (3)
$O8-H8B\cdots O6^{v}$	0.78 (3)	2.13 (3)	2.897 (3)	169 (3)

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y, -z + 2; (iii) $x - \frac{1}{2}, -y - \frac{1}{2}, z + \frac{1}{2}$; (iv) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (v) -x + 2, -y - 1, -z + 2.

metal-organic papers

H atoms bonded to C atoms were placed in geometrically calulated positions (C—H = 0.93 Å) and refined using a riding-model approximation, with $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$. H atoms bonded to O and N atoms were found in difference Fourier maps and refined freely.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The project was supported by Ningbo University Foundation (grant Nos. 008–460452 and 008–460453).

References

Cantarero, A., Amigó, J. M., Faus, J., Julve, M. & Debaerdemaeker, T. (1988). J. Chem. Soc. Dalton Trans. pp. 2033–2039.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976). ORTEPH. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Kamiyama, A., Noguchi, T., Kajiwara, T. & Ito, T. (2000). Angew. Chem. Int. Ed. 39, 3130–3132.

Lerner, E. I. & Lippard, S. J. (1977). Inorg. Chem. 16, 1546–1551.

MacGillivray, L. R., Groeneman, R. H. & Atwood, J. L. (1998). J. Am. Chem. Soc. 120, 2676–2677.

Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.

Rigaku (1998). RAPID-AUTO.Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

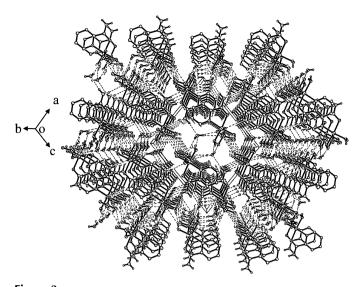


Figure 3
The packing of (I). Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sieroń, L. & Bukowska-Strzyżewska, M. (1999). Acta Cryst. C55, 491–494.Zheng, Y. Q., Lin, J. L. & Kong, Z. P. (2004). Inorg. Chem. 43, 2590–2596.